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Abstract—We present a compute-efficient 12-hour geomagnetic
storm triage model that uses only upstream solar wind and
interplanetary magnetic field (IMF) measurements (L1 or near-
Earth) to predict whether storm-level geomagnetic activity (Kp
≥ 5, NOAA G1) will occur within the next 12 hours. The system
is designed as a front-end gate that triggers costly downstream
physics simulations only when risk is elevated. Using NASA
OMNI hourly composites spanning 1995-2025 (263,016 times-
tamps) with strict chronological evaluation under strong class
imbalance, we construct supervised datasets from a deployable
10-feature upstream configuration and benchmark multiple time
coverage and context variants. Baseline models achieve test ROC-
AUC ≈ 0.84-0.87 and PR-AUC ≈ 0.46-0.52 across variants. On
the deployable full-history variant, a tuned random forest reaches
ROC-AUC=0.8604 and PR-AUC=0.4839, while a tuned neural
network yields higher recall (0.7142 vs. 0.6072 at threshold 0.5)
at lower precision, reflecting a recall-first triage policy. Reliability
analysis indicates systematic miscalibration at high predicted
probabilities, motivating post-hoc calibration and drift aware
monitoring prior to operational decision support.

Index Terms—space weather, geomagnetic storms, solar wind,
OMNI, Kp index, early warning, triage, random forest, neural
network, calibration, successive halving

I. INTRODUCTION

Geomagnetic storms are episodes of efficient solar wind
energy transfer into Earth’s magnetosphere. Impacts include
satellite anomalies, increased drag, navigation error, and ge-
omagnetically induced currents. Coupling is often framed
through IMF orientation and reconnection-driven dynamics
[1], while empirical coupling functions summarize how up-
stream solar wind state maps to magnetospheric response [2].
Operationally, major disturbances are frequently associated
with CME-driven structures rather than flares alone [3], [4].

Physics-based prediction remains central for Sun-to-Earth
forecasting, including background solar wind modeling and
CME propagation using WSA/ENLIL-family systems [5]–
[7], as well as EUHFORIA and SUSANOO-CME [8], [9].
Running these solvers continuously at high cadence is ex-
pensive and, for CME events, sensitive to initialization uncer-
tainty. This paper targets a narrower decision problem: using
upstream-only measurements to decide when it is worth paying
for downstream simulation.

II. RELATED WORK

Operational pipelines typically combine background solar
wind estimates with transient propagation models and post-
processing for geomagnetic impact. WSA-style modeling uses

near-real-time solar magnetic field updates to improve wind
prediction [5], while ENLIL provides a widely used 3D
heliospheric MHD framework for solar wind structure and
CME propagation [6]. EUHFORIA provides a complementary
forecasting environment [8], and recent validation of EUH-
FORIA’s cone and spheromak CME models reports event-
set skill and recurring error modes in arrival and Kp-related
evaluation [10]. Those results demonstrate a practical result
that a functional model is not equally informative in every
hour of the solar cycle.

Reduced physics solar wind models such as HUX/HUXt
aim to preserve speed while retaining key dynamical behav-
ior [11]. On the machine-learning side, calibration matters
whenever scores are treated as probabilities by operators
or by automated trigger logic [12]. Under shift, conformal
prediction offers conservative uncertainty statements when its
assumptions are approximately satisfied [13].

The contribution here is a compute-aware gate, designed to
run cheap upstream scoring continuously, then spend compute
on downstream solvers during windows where the upstream
state looks storm-favorable.

III. DATA AND TASK DEFINITION

A. OMNI Hourly Measurements (1995-2025)

We use NASA SPDF OMNI hourly composites retrieved
via OMNIWeb [14], spanning 1995-2025 (263,016 hourly
timestamps). OMNI standardizes and time-shifts measure-
ments from multiple spacecraft, which improves usability
but introduces multi-decade heterogeneity in measurement
provenance and data quality. This motivates chronological
evaluation and drift-aware monitoring [15], [16].

B. Inputs and Label Construction

Let Xt denote the upstream measurement vector at hour t.
We define a leakage-safe 12-hour warning label using future
Kp:

yt = ⊮
(

max
h∈{1,...,12}

Kpt+h ≥ 5
)
. (1)

Kp is provided by GFZ [17]. In common OMNI exports, Kp
appears as Kp×10, so the operational threshold corresponds to
KpIndex ≥ 50. Kp is never used as an input feature. We retain
Dst as contextual metadata (not for labeling), since classic
formulations connect ring-current response to upstream driving
[18], [19].



C. Leakage Controls

Inputs are restricted to time-t upstream measurements.
Labels depend only on future Kp within the fixed 12-hour
horizon. Any preprocessing parameters are fit on training data
only and applied to validation/test splits.

IV. FEATURE SET AND DATASET VARIANTS

A. Primary 10-Feature Configuration (Deployable)

The deployable configuration (VA) is restricted to ten OMNI
upstream solar wind/IMF variables: |B|, Bz , By (nT); V
(km/s), np (cm−3), T (K); Ey (mV/m), plasma β, Alfvén
Mach number MA, and dynamic pressure Pdyn (nPa). These
families follow standard coupling intuition and coupling-
function literature [1], [2]. OMNI column names vary by
export format; this specification is by physical quantity and
unit.

B. Variant Design

We benchmark variants along two axes: (i) time coverage
and (ii) feature-family augmentation with context. VA is
upstream-only. VB augments VA with solar cycle context (e.g.,
sunspot number and simple cycle proxies) to test whether
coarse cycle state improves discrimination without using mag-
netospheric indices. VC (VA + Kp as an input) is included
only as a diagnostic upper bound; it is excluded from any
deployment claims.

C. Missingness Handling

Sentinel values are replaced with NaN. For controlled
benchmarking, we remove rows with missing values in the
selected feature set, yielding variant-dependent sample sizes. A
deployed system would require imputation or sensor fallback;
this paper focuses on leakage-safe evaluation with consistent
preprocessing.

V. EXPERIMENTAL PROTOCOLS

A. Protocol A: Chronological Train/Validation/Test

For each variant, we split chronologically into approxi-
mately 66.7% train, 16.7% validation, and 16.7% test with
no shuffling.

B. Protocol B: Cross-Cycle Generalization

To isolate cross-cycle generalization, we train on Solar
Cycles 23-24 (1996-2019) and evaluate on Cycle 25 (2020-
2025) using the VA feature set. This is reported as V10 and
is not mixed into Protocol A hyperparameter tuning.

VI. MODELS AND OPTIMIZATION

We use scikit-learn baselines for tabular prediction [20].
Logistic regression (LR) provides a class-weighted linear
baseline, while random forests (RF) provide a non-linear
ensemble baseline with feature importance diagnostics. For
tuned comparisons on the deployable full-history configu-
ration, we additionally evaluate a small feedforward neural
network (NN). NN outputs are treated as scores that may
require calibration before probability interpretation [12].

Fig. 1. Event-rate variation over time for the Kp≥ 5 (12-hour) label. To avoid
partial year artifacts, exclude incomplete years or annotate coverage (hours
observed).

RF tuning uses successive halving via
HalvingRandomSearchCV, with the number of trees
as the resource axis [21]. NN tuning uses an epoch-wise
successive halving procedure, promoting candidates with
higher validation PR-AUC.

VII. METRICS

Because storm labels are rare and prevalence varies across
time windows, we report ROC-AUC for ranking discrimina-
tion and PR-AUC for rare-event performance. For a fixed
comparison point, we also report recall, precision, and F1
at threshold 0.5. Operational thresholds should be chosen on
recent validation windows to satisfy recall targets or trigger-
budget constraints.

VIII. RESULTS

A. Event-Rate Context

Event prevalence varies across solar cycle phase, and partial
year coverage can inflate annual event-rate estimates if not
handled explicitly. Figure 1 visualizes event-rate variation over
time for the Kp≥ 5 (12-hour) label and motivates interpreting
PR-AUC together with prevalence and observation coverage.

B. Benchmarks Across Variants (Protocol A) and Cross-Cycle
Test (Protocol B)

Table I summarizes baseline test ROC-AUC and PR-AUC
for LR and RF across ten variants. Across time-coverage
windows, ROC-AUC remains comparatively stable, while PR-
AUC shifts with prevalence and phase-dependent event den-
sity. Figure 2 visualizes this behavior across variants.

C. Storm vs. Non-Storm Separability in Upstream Features

Figure 3 shows representative storm vs. non-storm distribu-
tions for IMF variables, supporting that upstream conditions
contain separable structure aligned with the label definition.
This justifies attempting an upstream-only gate before running
propagation models.



Fig. 2. Benchmark performance across dataset variants (ROC-AUC and PR-
AUC). PR-AUC varies with prevalence and solar cycle phase.

TABLE I
BENCHMARKING ACROSS 10 VARIANTS. VA/VB ARE DEPLOYABLE

(UPSTREAM-ONLY; VB ADDS SOLAR CYCLE CONTEXT). VC INCLUDES KP
AS AN INPUT AND IS NON-DEPLOYABLE (DIAGNOSTIC ONLY). V10 IS

PROTOCOL B (TRAIN CY23-24, TEST CY25).

Variant Feat Train N LR ROC LR PR RF ROC RF PR Avg ROC Comb.

V01 VA full 10 171254 0.8587 0.4717 0.8663 0.4659 0.86250 0.70502
V02 VA 2000 10 142703 0.8432 0.4781 0.8515 0.4764 0.84735 0.69931
V03 VA 2010 10 86674 0.8553 0.5202 0.8559 0.4944 0.85560 0.71628
V04 VB full 14 171254 0.8645 0.4750 0.8725 0.4745 0.86850 0.71100
V05 VB 2000 14 142703 0.8492 0.4806 0.8585 0.4908 0.85385 0.70659
V06 VB 2010 14 86674 0.8623 0.5212 0.8679 0.4914 0.86510 0.72158
V07 VC full† 11 171254 0.8587 0.4717 0.8663 0.4659 0.86250 0.70502
V08 VC 2000† 11 142703 0.8432 0.4781 0.8515 0.4764 0.84735 0.69931
V09 VC 2010† 11 86674 0.8553 0.5202 0.8559 0.4944 0.85560 0.71628
V10 Cycle(VA) 10 210384 0.8583 0.4712 0.8640 0.4642 0.86115 0.70377
†VC uses Kp as an input feature and is shown only as a diagnostic upper

bound; it is excluded from deployment claims.

D. Tuned Models on the Deployable Full-History Variant

We select the deployable full-history configuration (V01) as
the primary operating point for tuning. RF and NN are tuned
on the validation split under Protocol A and evaluated once
on the held-out test split. Table II shows that RF improves
PR-AUC and precision at the standardized threshold, while
NN increases recall. In a gate, the RF behavior reduces
wasted triggers, while the NN behavior reduces missed storm
windows.

E. Interpretability and Physical Coherence

Figure 4 shows feature importance and dropout sensitivity.
Magnetic-field strength and southward IMF components, along
with compression proxies such as dynamic pressure, tend
to rank highly. This matches the coupling picture where
southward Bz and compression help set storm-favorable con-
ditions [1]. Performance degrades gradually under ablations,
suggesting the model is not dominated by a single brittle input.

F. Calibration and Reliability

Figure 5 shows reliability curves indicating miscalibration
in the high-score region. If scores are read as literal proba-
bilities, overconfidence can cause trigger policies to behave

Fig. 3. Storm vs. non-storm feature distributions for representative IMF
variables, supporting physical separability of upstream conditions.

TABLE II
TUNED TEST-SET PERFORMANCE ON V01 (VA FULL, 1995-2025).

THRESHOLDED METRICS AT 0.5.

Model PR-AUC ROC-AUC Recall Precision F1

RF (tuned) 0.4839 0.8604 0.6072 0.3460 0.4408
NN (tuned) 0.4626 0.8521 0.7142 0.1979 0.3100

too aggressively. In deployment, outputs should be treated as
scores unless calibrated on recent windows using post-hoc
methods [12]. Under distribution shift, conformal methods can
add a conservative uncertainty layer when assumptions are
approximately met [13].

IX. OPERATIONAL CONTEXT AND DEPLOYMENT
INTERPRETATION

This model serves as a trigger and does not forecast CME
propagation. It answers a narrower evaluation of the cost of
running a heavier model in the next cycle.

Figure 2 suggests the rank-order signal is stable across time
windows, while Figure 5 shows that probability calibration
needs separate attention. Figure 3 supports that upstream
separability exists, and Figure 4 shows that the strongest
predictors align with well-known storm drivers.

EUHFORIA validation results make the compute-allocation
argument concrete. In event sets, skill and error vary by
configuration and by case [10]. Running a full CME model
every hour is not realistic for many settings, and it is not
necessary during quiet upstream regimes. A gate makes the
expensive model run often when upstream risk is elevated and
less often when conditions look benign. When escalation is
triggered, reduced-physics fast models (e.g., HUXt) can be
used as cheap bracketing before spending compute on higher-
fidelity ensembles [11].

X. DATA SHIFT, EVENT-RATE VARIABILITY, AND DRIFT

Storm prevalence varies across cycle phase and season.
Figure 1 shows that the event rate is not stationary, so PR-AUC



Fig. 4. Feature importance and dropout sensitivity. Dominant predictors
commonly include |B|, Bz , Pdyn, and solar wind speed, consistent with
coupling intuition [1].

Fig. 5. Reliability curves (calibration). Curves below the diagonal indicate
overconfident probabilities, motivating post-hoc calibration prior to opera-
tional use [12].

should be read together with prevalence and data coverage.
Because OMNI is a composite record and measurement prove-
nance changes across decades, distribution shift is expected
[15]. In deployment this motivates rolling validation windows,
periodic recalibration, and drift monitoring that is driven by
recent data rather than pooled multi-decade averages.

XI. LIMITATIONS

The label is defined using Kp within a fixed 12-hour win-
dow. This matches a NOAA G1-aligned triage objective, but it
does not cover all hazards. Alternative targets (Dst thresholds,
sustained southward Bz , AE bursts) correspond to different
operational definitions and may change which upstream fea-
tures dominate. Missingness is handled by row deletion for
controlled benchmarking; real deployments require imputation
or fallback logic. Calibration remains imperfect in high-score
bins (Figure 5), so probability interpretation requires post-hoc
calibration on recent data and continuous monitoring [12].

XII. CONCLUSION

We developed a compute-efficient 12-hour geomagnetic-
storm triage model that predicts whether Kp ≥ 5 will occur
within the next 12 hours using only upstream solar wind
and IMF measurements. With leakage-safe labels and strict
chronological evaluation, discrimination is stable across time-
coverage and context variants (Figure 2), while PR-AUC
moves with event prevalence (Figure 1). On the deployable
full-history configuration, a tuned random forest improves PR-
AUC and precision, while a tuned neural network increases
recall, reflecting two plausible gate settings. Feature sepa-
rability (Figure 3) and physically aligned predictor rankings
(Figure 4) support an upstream-only trigger, while reliability

Fig. 6. ROC and PR curves for representative models on the deployable
configuration.

Fig. 7. Mutual-information feature ranking (model-agnostic).

curves (Figure 5) show that calibration must be handled
explicitly before operational use.
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APPENDIX A
ADDITIONAL FIGURES

The appendix provides supporting plots that are useful for
interpretation and reproducibility but not required for the main
narrative.
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